Application of Semi-Automated Filter to Improve Waveform Lidar Sub-Canopy Elevation Model
نویسندگان
چکیده
Modeling sub-canopy elevation is an important step in the processing of waveform lidar data to measure three dimensional forest structure. Here, we present a methodology based on high resolution discrete-return lidar (DRL) to correct the ground elevation derived from large-footprint Laser Vegetation Imaging Sensor (LVIS) and to improve measurement of forest structure. We use data acquired over Barro Colorado Island, Panama by LVIS large-footprint lidar (LFL) in 1998 and DRL in 2009. The study found an average vertical difference of 28.7 cm between 98,040 LVIS last-return points and the discrete-return lidar ground surface across the island. The majority (82.3%) of all LVIS points matched discrete return elevations to 2 m or less. Using a multi-step process, the LVIS last-return data is filtered using an iterative approach, expanding window filter to identify outlier points which are not part of the ground surface, as well as applying vertical corrections based on terrain slope within the individual LVIS footprints. The results of the experiment demonstrate that LFL ground surfaces can be effectively filtered using methods adapted from discrete-return lidar point filtering, reducing the average vertical error by 15 cm and reducing the variance in LVIS last-return data by 70 cm. The filters also reduced the largest vertical estimations caused by sensor saturation in the upper reaches of the forest canopy by 14.35 m, which improve forest canopy structure measurement by increasing accuracy in the sub-canopy digital elevation model. OPEN ACCESS Remote Sens. 2012, 4 1495
منابع مشابه
Canopy Height Estimation in French Guiana with LiDAR ICESat/GLAS Data Using Principal Component Analysis and Random Forest Regressions
Estimating forest canopy height from large-footprint satellite LiDAR waveforms is challenging given the complex interaction between LiDAR waveforms, terrain, and vegetation, especially in dense tropical and equatorial forests. In this study, canopy height in French Guiana was estimated using multiple linear regression models and the Random Forest technique (RF). This analysis was either based o...
متن کاملA Comparison of Forest Biophysical Parameters Assessed with Lidar Data on Three Platforms: Ground, Airborne, and Satellite
7 Lidar remote sensing from three platforms – ground, airborne, and spaceborne – has 8 the capability to acquire direct three-dimensional measurements of the forest canopy that 9 are useful for estimating a variety of forest inventory parameters, including tree height, 10 volume, and biomass, and also for deriving useful information for characterizing wildlife 11 habitat or forest fuels. 12 The...
متن کاملHigh Altitude Lidar to Enhance Geosar System Performance
EarthData Technologies has performed a research and development project to investigate the possibilities of a comounted LIDAR system to enhance the performance of the Geographic Synthetic Aperture Radar (GeoSAR) system. The LIDAR system could provide precise ground control points that can be used in the mosaick process and it could add valuable information about tree canopy structures to the pr...
متن کاملForest Characteristics and Effects on LiDAR Waveforms Modeling and Simulation
LiDAR (Light Detection And Ranging) remote sensing has been used to extract surface information as it can acquire highly accurate object shape characteristics using geo-registered 3D-points, and therefore, proven to be satisfactory for many applications, such as high-resolution elevation model generation, 3-D city mapping, vegetation structure estimation, etc. Large footprint LiDAR especially, ...
متن کاملEstimating Canopy Height of Montane Cool Temperate Forest Using Large-footprint Spaceborne Lidar
Estimation of forest carbon storage is a critical challenge for understanding the global carbon cycle because it dominates the dynamics of the terrestrial carbon cycle. Light Detection and Ranging (LiDAR) system has a unique capability for estimating accurately forest canopy height, which has a direct relationship and can provide better understood to the aboveground carbon storage. To test the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 4 شماره
صفحات -
تاریخ انتشار 2012